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S U M M A R Y  
An extension of Lanczos' method employing "quadrature by differentiation" for the approximate solution 
of boundary value problems in ordinary differential equations is further extended to partial differential 
equations. The approximate solution is obtained in terms of piecewise polynomials or as rational function 
approximations. In the process, the boundary values are employed to yield initial values. In the illustrative 
problem treated, the method is combined with the matrix transformation method to yield, in the limit, exact 
initial values. Thus, we have a convenient method of invariant imbedding. The initial values thus obtained 
are utilized in the formulation of an eigenfunction solution to a non-separable problem in which the deri- 
vatives of the solution function are of interest, so that retention of analytic control is desirable. 

1. Introduction 

In [1], Lanczos introduces a method for the approximate solution of boundary value 
problems defined by ordinary differential equations. As pointed out by Lanczos, this 

method, based on ,,quadrature by differentiation", consists essentially of a power series 
expansion and truncation, in which the solution is expanded about the two boundary 
points. The point of  truncation depends on the quadrature formula chosen. With regard 

to these quadrature formulas, it is important  to note that the accuracy of the formula 
which contains (n - 1)th derivatives of  the integrand corresponds to that obtained by 

replacing of the integrand by its truncated power series of degree (2n - 1) (see [1]). The 

resultant polynomial approximation emphasizes accuracy at the boundary points, in 
contrast with Rayleigh-Ritz-Galerkin type procedures which are designed to optimize 

accuracy over the entire region of interest. Clearly, the Lanczos method, as presented in 

[1], would be unsuitable for problems in which the solution oscillates within the region 
of interest, as noted in [1]. 

A natural extension of Lanczos' method was treated in [2], where the region of  interest 
was partitioned into a sufficient number of  intervals so that the solution does not oscillate 
within any individual interval. The resultant approximate solution is obtained in terms of 
piecewise polynomials or as rational function approximations. In the present work, the 

method is extended to partial differential equations. The resultant solution is in the form 
of piecewise polynomials or rational functions in one of the independent variables, the 
coefficients being functions of  the remaining independent variables. In the process of  
solution we make use of  the matrix transformation method [3]. This illustrates the con- 
venience of employing the matrix transformation method and the related method of 
summary representation [4], (which are discussed in [3] and [4], respectively, in connection 

Journal of Engineering Math., Vol. 10 (1976) 363 376 



364 H. Herman 

with finite difference procedures) in connection with piecewise polynomial, or finite ele- 
ment, solutions. In addition, in [3] the matrix transformation method is confined to sym- 
metric matrices. Here, the method is applied to a problem with an asymmetric matrix. 

In the process of obtaining the solution, by the method illustrated here, we obtain initial 
data for the problem, so that the original boundary value problem may now be treated as 
an initial value problem. Moreover, as the number of intervals in the partition is increased, 
the accuracy of the initial data increases, so that an appropriate limit-taking procedure 
leads to the exact solution for the initial data. Thus we have a simple, formal method in 
contrast with some ad hoc methods of invariant imbedding (see, for example, [5]). Gener- 
ally, the goal of invariant imbedding iS to obtain a convenient numerical procedure for 
computing the solution function. But in certain problems, e.g. plate theory [5], torsion 
and plane elasticity problems [6], quantities of interest, i.e. the stresses, are given in terms 
of the derivatives of the solution. Hence, it is desirable to retain analytic control of the 
solution. We, therefore, illustrate the use of the initial data to obtain an eigenfunction 
series solution. For illustrative purposes, simple two-dimensional problems are used. 

2. Def l ec t ion  of  rectangular m e m b r a n e  

Consider a rectangular membrane of length a and width b, subjected to uniform tension S 
(Fig. 1). This problem is chosen because it is simple, so that essential procedures are not 
obscured by difficulties inherent in the problem, and the solution is known, providing a 
check on the results obtained here. The differential equation for the deflection w is: 

w" + # = Q. (1) 

Here, the dash ( )' denotes differentiation with respect to x, x = ,Y/a; the dot ('). denotes 
differentiation with respect to y, y = y/a, ,2 and y being the dimensional coordinates; 
Q = -aZp/S, p being the transverse pressure. The boundary conditions are: 

w(O, y) = w(1, y) = w(x, O) = w(x, p) = 0 (2) 

where p = b/a. 
We will now illustrate the extension of Lanczos' method, as extended in [2], to partial 

differential equations. We do not employ here the modification introduced in [2] because 
our ultimate goal here is to obtain exact initial values by a limit-taking process, and, for 
this purpose, the original method is satisfactory. Partition the rectangle into N strips, 
so that 

b 

- -  a ~ 1  I 

Figure 1. Rectangular membrane. 

g~ +J 
} a ,] 

Figure 2. Parallelogram-shaped membrane. 
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n 1 
x . =  N ;  x~ = 0 ;  x N =  1; x . + l - x .  = - - .  (3} 

N 

Applying the approx imate  quadra ture  fo rmula  [1] to a typical strip and retaining deriva- 
t i t  rives to w , we have 

= 1 , _ _ w~)N-2 + a120(w.+l + w~,)N-3 w.+x - w. _z(w.+l + w~)N-1 x r w . . . . .  1 0 - \  n + l  

, , = 1 -  ,, - - w . ) N  . ( 4 )  w.+l  - w. _~[Wn+l + w : ) N - 1  ~tWnl . . . . . . . .  + 1 2 

Here  (to illustrate the notat ion),  w" = w'(x, Y)I . . . .  . F r o m  (1), 

w " = Q - # ,  w " = Q ' - # ' .  (5) 

Let  k be an integer and  let 

Q = Qk sin krcx, Qk. = Qk sin k~x. .  (6) 

In t roduce  the differentiation opera tor  D and the shift opera to r  E, 

d 
D = - - ;  Ew.  = w.+ l ;  E - l w .  = w._ 1. (7) dy 

Then,  f r o m  (5), (6) and (7), (4) m a y  be writ ten as 

1 -  6 - - O -  w ;  

N-2 N-3 
t 

- 10 (E - 1)ak. + ~ (E + 1)Ok., (8 )  

N -1 ( N - Z  ) N -1 N -2 
- - - ~ ( E  + 1)OZw,, + (E - 1) 1 - 1 - ~ D  2 w~, = - ~ ( E  + 1)Qk. -- 1---2--(E - 1)Q~., 

n = 0 , 1 , 2  . . . . .  N -  1. 

The  preceding 2N equations plus the condit ions Wo = wN = 0 determine the 2(N + 1) 
unknowns.  The  bounda ry  condit ions are [noting the last two condit ions in (2)] 

w.(O) = w.(p) = w~(O) = w'(p) = 0. (9) 

Eliminating w~ between the two equat ions in (8), we obtain 

N-3 
[LI(E 2 + 1) - 2L2E]w. = N-z[ �88  + 1) 2 - ~o(E - 1)2]Qk. -- - - -  (E z - 1)Q~., 

3O 

n = 0 ,  1,2 . . . .  , N - 2 ,  (10) 
where 

N-2 N-4 13N-2 N-4 
L 1 = 1 + - - D  z + O 4, L2 = 1 - - D  2 + - - D  4. (11) 

15 240 120 80 

In  addi t ion to the first two bounda ry  condit ions in (9), we obtain  f rom (5) and (6) and the 
last two condit ions in (2) 

#.(0)  = f~.(p) = Qk.. (12) 
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The (N - 1) equations in (1) plus w o = wN = 0 and the boundary conditions in (9) and 
~(12) determine the w,. 

F o r k =  1 a n d N = 2 ,  wehave  

( D 4 w l  - 416D2w - Q 1  + 3 ] ~ -  i + 1280wi = 112 (13) 

with boundary conditions 

wi(0 ) = wl(p ) = 0, #i(0) = #l(P) = Q1. (14) 

:The solution is 

Ic  1 - cosh 3. 153p sinh 3. 153y - 1] 
w 1 = O.lO06Q1 osh 3. 153y -~ sinh 3. 153p 

I 1 - c ~  s i n h l l ' 3 5 y -  11' (15) - 2 . i 1 5  x 10-6Qi c o s h l l . 3 5 y +  s inh l l . 35p  

~and from the second equation in (8), taking into account that w[ = 0, we have 

t c  1 - c ~  s i n h 3 . 1 5 3 y -  11 w~ = 0.3154Q1 osh 3.153y + sinh 3. 153p 

[ 1 - c ~  s i n h l l . 3 5 y  1. (16) + 40.47 x 10-6Q1 cosh 11.35y + sinh 11.35 

For comparison, the exact solutions are: 

Qi I 1 - c ~  s inhTzy-  11, 
w i = ~ -  cosh roy + - sinh rcp (17) 

Q1 cosh ~y + sinh~zy - 1 . 
Wo = ~c sinh rcp 

Thus we see that satisfactory approximations for wn and w~ are obtained even when N = 2. 
Note that the solutions in (15) and (16) contain very small spurious components which 
can be shown to remain small for all y within the range of interest. 

For N > 2, the form of the differential equations (10) and the boundary conditions (9) 
and (12) is such that, for any N, the matrix transformation method [3] can be employed 
to obtain w, (this approach will be demonstrated later). Then (8) can be used to solve 
for w~. The higher order derivatives are then obtained with the aid of (5) and (8). Hence 
we have, for x, < x =-< x,+~, the polynomial approximations 

: 1 t:r 1 tit / w = w ,  + w , ( x  - x , )  + i w , t x  - x , )  2 + ~ w ,  t x  - x,,) 3, 
(18) 

r 1 I t  1 - -  w = w . + ~  + w , , + l ( x  - x . , + O  + ~ w , , + ~ . x  - x , , + l )  2 + ~w,,+~(x x,,+O 3. 

,Clearly, the first equation in (18) will be more accurate near x = x~, the second near 

X = X n +  1 .  

Following Lanczos [1], we can obtain improved accuracy by formulating the solution 
in terms of rational function approximations. Consider a point x .  in the vicinity of x,+ ~. 
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For  definiteness, let x ,  < x ,  < Xn+l, and let w, = w(x , ,  y). The approximate  quadrature  
equations over the range [x, ,  x ,+ l ]  are: 

' - x , )  t w . + l  - w ~ )  Wn+ 1 - -  W ,  = �89 1 --  X , ) ( W n +  1 -1- Wf,) - -  ~ 0 ( X n + l  2- - 

1 "~3 I" tvt tt! + w ~ ( x . + i  - x,~ ~w.+ I + w,) ,  (I9) 

' - ' = - x , ) ( w . + l  + - - - w , ) .  W n +  1 W ,  l ( X n +  1 ': WE ) 1 ~2{ . . . . . .  T~-(Xn + 1 X * I  k W n + l  

Rearranging,  taking into account  (5), we obtain 

w ,  - l ( x . + l  - x , ) 2 r  + k ( x . + l  - x , ) w ' ,  - 1 ~ o ( X . + l  - x , ) 3 ~ 0 ;  

= W.+l - �89 - x,)w' .+l  + ~o(X.+l - x ,)2(Q,+1 - Q ,  - fo .+0 

1 x - x , )3 (Q '+l  + Q', - # '+1)  - �89 - x , ) # ,  + w,  - -  1 2 0 (  n + l  

2 " :  
- ~ ( x . + l  - x , )  w , .  

t 2 . . t  
w ,  - � 8 9  - x , ) # ,  - ~ ( x . + l  - x , )  w ,  

= w'.+ 1 - �89 1 - x , ) (Q.+  1 + Q ,  - / 0 . + 1 )  

+ ~-r - x,)2(Q' .+i  - Q~, - #'.+1)- (20) 

The preceding equations determine w, and w,. We need only the particular solution. 
As an example, consider the case of  N = 2, to which the solution is given by (15) and (16)�9 

t .-t ! v Note  that,  f rom symmetry,  wl = wa = 0 and wz = - w o .  The second (negligible) terms 
in (15) and (16) will be omitted�9 Consider a point  x ,  in the vicinity o f  the point  x = �89 
say �88 < x ,  < 43-, and let 

x i = 0.10036; /s = 0�9 ~3 = 3.153. (21) 

Then the combinat ion of  (15), (16), (20) and (21) yields 

QI~:I[ 1 _ ~oX~(x 1 _ x,)2 _ 1 4 ~ x - o % ( x l  - x , ) ' ]  
1 2 1 4 1 + -f34%(xl - x , )  2 dr  2 ~ - / s  - -  X , )  4 

[ 1 - c ~  s inht%Y] 
�9 cosh tc3y q- sinh x3p 

+ Q1 -~c 1 + ~o(xl  - x,)Z(7 + 3 sin 7rx,) + - ~ - ( x l  - x , )  3 cos rex, , 

(22) 
Qitq~ca(xi - x , )  v 

W, 1 4 1 + ? ~ ( x l  - x , )  ~ + ~ - a v ~ ( x ~  - x , ) "  

[ 1 - c ~  s inhxaY 1 
�9 c o s h  x 3 y  q- sinh ~c3p 

- �89 (xl - x,)(1 + sin rex,) + -6- (xl - x , )  2 cos rex, . 

Since x ,  is an arbi t rary point  in the vicinity of  xl ,  the subscripted asterisk may be dropped.  
The piecewise polynomial  and rational function approximate  solutions obtained by this 
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method satisfy the boundary conditions at x = 0 and x = 1, but the boundary conditions 
at y = 0 and y = p are satisfied only at the discrete points x = x., n = 0, 1 . . . .  , N, 

Having obtained an approximation for w;, we can now treat the problem as an initial 
value problem. Thus, the preceding serves as a simple formal approximation procedure for 
invariant imbedding [5]. As N becomes large, the number of points along y = 0 and 
y = p at which the boundary conditions are satisfied increases. In the limit, we would 
expect to obtain the exact solution for w;. In preparation for such a limiting procedure, 
we return to (8), where the grouping of terms is such that their order of magnitude is 
clear, and we retain terms of order 1IN only. Note that the functions w., Qk. and their 
derivatives as well as (E + 1)fn are all of order unity, whereas (E - 1)f. is of  order 1/N. 
Thus we obtain 

N-1  
(~ - 1 ) w .  - - -  ( e  + 1 ) w ;  = 0 ,  

2 
N -  a N -  1 (23) 
- -  (E + 1)D2w, + (E - 1)w~ = (E + 1)Qk,,, n = O, 1, 2 , . . . ,  N - 1. 

2 2 

The preceding equations are also obtainable directly from a one-term quadrature approxi- 
mation. Eliminating w~ between the two equations in (23), we obtain (with a shift in the 

index n) 

(D z + 4NZ)(w,,+~ + w . - O  - 2 ( - D  2 + 4NZ)w. 

( krC)sinkrcx., n = l ,  2, N - I .  (24) =2Qk  l + c o s ~ - -  . . . .  

The preceding equations plus Wo = WN = 0 and the first two boundary conditions in (9) 
determine the solution. The right side of (24) was obtained with the aid of (6) and trigo- 
nometric identities. 

Following Zuber [3], the problem will now be solved by the matrix transformation 
method. In matrix form, (24) may be written as 

LaTw - 2L4w = 2Qk 1 + cos -~ -  s, (25) 

where 

L3 = (D 2 + 4N2), I-,4 = ( - D z  + 4N2), (26) 

T is the (N - 1) x (N - 1) matrix 

- 0  1 0 0 0 I 

t 
1 0 1 0 0 

T =  0 1 0 1 , (27) 
0 . . . .  1 0 1 

_ 0  . . . .  0 1 0_  

and w and s are the vectors 

I k~ --,2k7c . . . ,  ( N N 1 ) k r c ] r  
w = [w 1, w2, . . . ,  wN-~] T, s = sin --~-, sin- N sin. - . (28) 
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The eigenvalues 2,~ and the unit eigenvectors p,, of T are, respectively, [3] 

mTr / / 2  "~- V m~ 2m~z (N - 1)m~ ] r  
2,. = 2 cos --~-, Pm = k ~ - )  L sin ~ - ,  sin ~ . . . . .  sin 7V- J ' 

m =  1,2 . . . . .  N -  1. (29) 

Let A be the matrix of the eigenvalues and P the matrix of the eigenvectors. Note that 
p = pT, T = PAP ,  and PP = I, where I is the unit matrix. Premultiplying (25) by P, 
we obtain 

( k~Z)Ps (30) L a A P w - 2 L 4 P w = 2 Q k  1 + c o s  N -  

Let 

Pw = z, Ps = r. (31) 

Then we have (N - 1) uncoupled equations 

/ 
L32mz,, - 2L4z,, = 2Qk i1  

k 

where 

+ c o s  N rm' m =  1,2 . . . .  , N -  1, 

Zm ---- ~ sin - -  wj, 
j=l  N 

r m =  ~ s i n - - s i n - -  
j=~ N N 

Transformation of the first two boundary conditions in (9) yields 

z~(O) = z A p )  = o. 

(32) 

(33) 

(34) 

The solution to (32), taking into account (26) and (34) is 

( 7)" z,. = Am cosh c~=y + B sinh cg~y Qk N -  2 1 + cos 
2 2 - 2m 

where 

(2--}~m~ �89 ( kTz)(I'm ) 
cg. = 2N  + 2 , . /  Am - QkN-  2 1 + c o s - -  2 ~ 2 ~  

' 2 N ' 

Inverting to the w,, noting that 

w = Pz, 

(35) 

(36) 

(37) 

we have 

= QkN -3 (1 + COS--  Wn 
\ 

kTc ~ N -  1 N -  1 C r  a __ 1 n m r c  mflr 
j ~ ~ - -  s i n - -  s i n - -  sink~zxj, (38) 

N j=l  m=l 2 - 2 , ,  N N 
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where 

Cm = cosh ~mY + 
1 - cosh amp 

sinh a~p 
sinh O~my. (39) 

Now, from (23), we have 
N-1 

t t 

Wl' +Wo' = 2 N ( w l - w o ) ,  w l - w o -  
2 

(Qkl + Qko - #i  - #o)- (40) 

Subtracting the second equation in (40) from the first, retaining only terms of order unity, 
and noting that Wo = 0, we have 

W'o = Nwi.  (41) 

To evaluate the summation on j in (38), note that j /N  = xj and, therefore, as N becomes 
infinite 

N -  1 mjn 
sin 

j=l  N 
sin krcx~ \ -~-  = sin mrcx sin krcxdx 

_ [ 0  for m # k ,  

1 f o r m  = k. 
(42) 

So that we have, from (38), (41) and (42), 

, kN-1 ( w0 = �89 1 + cos N 2 ~-- 2k- )" (43) 

In addition, as N goes to infinity, 

krc kz kTz k27c 2 
l + c o s  N = 2 ;  sin N N '  2 - 2 k =  Nz , c ~ = k n .  (44) 

The last two of the preceding equations follow from (29) and (36), respectively. From (39) 
and (44), (43) becomes 

k ~ (  1 - coshkzcp ) 
w~ = cosh krcy + sinh krcp sinh krcy - 1 (45) 

which coincides with the exact solution. 

3. Parallelogram-shaped membrane 

Consider a parallelogram-shaped membrane (Fig. 2) with an edge of length a in the x- 
direction and an edge of length b in the y-direction. Here x and y are nondimensional skew 
coordinates with an included angle ~; x = "Y/a, y = y/a, 2 and y being the dimensional 
coordinates. The membrane is under uniform tension S. The differential equation for the 
deflection w is: 

w " -  2fl~' + # = Q. (46) 
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and the boundary conditions are: 

w(0, y) = w(1, y) = w(x, O) = w(x, p) = 0 (47) 

where 

13 = cos c~; Q = (paZ/S)72; ? = sin ~. (48) 

The remaining symbols play the same roles here as in the preceding section. 
The differential equation (46) does not have a complementary solution which is the 

product of arbitrary functions of x alone and y alone, but it does possess a product solution 
of the form 

wc = eZXW(y). (49) 

The reduced differential equation for W(y) is 

1;17 - 2 f 1 2 W  + 2BW = 0 .  ( 5 0 )  

The eigenfunctions satisfying (50) and the last two conditions in (47) are: 

W, = A,e ~"pr sin 2,7y, (51) 

where the A, are arbitrary constants, and the eigenvalues are 

nT~ 
)~, = + - - ,  n = 1, 2, 3, . . . .  (52) 

TP 

To derive an orthogonality relation for these eigenfunctions, note that the differential 
equation (50) for W, may be written in vector form 

2n[~ 1 IFYnl+[; 1 
- 2flDJ Lw, J 

where 

g .  = 2 . w . .  

0  53, 
D 2 W n 

(54) 

The orthogonality relation, obtained in the usual manner, is for 2 m ~ 2, 

1 I1. 

A particular solution of (46) satisfying the last two conditions in (47) is 

Wp = �89 _ py). (56) 

Hence, a solution 

w = ~ e a"xWn(y) + �89 _ py) (57) 
n = - o o  

satisfies the last two boundary conditions in (47). Suppose that w~ were found by the 
method of  invariant imbedding. Note that, from (57) and (54), 
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o0 

w; = Z g . (y) .  (58) 
t i m - - C O  

Then the first two boundary conditions in (47) may be written as: 

Z co + = , (59) 
= -  W p  t i  

where wp is given by (56). The A, [see (51)] may then be found with the aid of  the ortho- 

gonality relation (55). 
We will, therefore, find w; in the same manner as in the preceding section. As before, 

we will seek the solution for a region partitioned into N strips, considering N to be large, 
and then take the limit as N goes to infinity. Hence, we begin by considering one-term 

quadrature approximations 

w,+l - w, ~(wti+l + ws -1 ,  
(6o) 

! t I " t t  I t  - -  1 w , + l - w , = z t w t i + l  + w , ) N  , n = O, 1, 2, . . . ,  N - 1. 

Taking into account (46) and eliminating w~, we obtain 

(D 2 - 4 ~ N D  + 4NZ)w,+ ~ + 2(D 2 - 4 N Z ) w ,  

-b (D 2 q- 4 f i N D  + 4NZ)wn_ 1 = 4Q,  

In addition, we have 

W 0 = W N = 0. 

n - -  1,2 . . . . .  N -  1. (61) 

(62) 

The (N + l) equations (61) and (62) plus the boundary conditions (47) determine the wn. 
Here, the operators for w,,+ 1 and % - 1  are no longer identical, so that the method of [4] 

is no longer applicable to the differential equation as a whole. However, we may obtain 

a set of  complementary solutions 

wc~ = H , e  ~r. (63) 

Then the homogeneous form of (61) yields 

(u2 _ 4/~U~ + 4N2)Ho+~ + 2(~ 2 - 4 ~ ) H , ~  

+ (#2 + 4 f i N #  + 4NZ)H, ,_  ~ = 0, n = 1, 2 . . . . .  N - 1. (64) 

In addition, we assume that (62) is satisfied separately by the complementary and particular 

solutions. Thus, 

H o = H , = 0 .  (65) 

Let 

(66) 

(67) 

#z  _ 4 f i N #  + 4 N  2 = ~, Iz z - 4 N  z = ~, t~ z + 4 B N #  + 4 N  2 = f t .  

Assuming a solution to (64) of the form Hn = z", we obtain 
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where K 1 and K 2 are arbitrary constants and 

_r +_ ( r  _ ~)~ 
~l,z = ~ (68) 

Enforcing the conditions (65) leads to 

K 2 = - K 1 ,  "Clr n = Z2m e+-2rnni/N, m = 1, 2, . . . ,  N - 1. (69) 

The plus sign in the exponent of e in the immediately preceding equation is the only one 
which corresponds to 

~ =  - (~.,~/rn)~- cos ( - ~ )  (70) 

which satisfies (64) and yields 

Hnm = g,n(rlrn/~rn) hI2 sin~-~-). (71) 

From (66) and (70), we can write 

( P r n ) 2  l = _ { I i +  _f12 cos ( - ~ - ) .  
\ 2 N /  \ 2 N /  J \ N / J 

In anticipation of the limiting process, note that, for N ~ o% (72) yields 

(72) 

mT~ 
#rn = + -  (73) 

7 

The preceding equation takes into account (48). 
The Hm, m = 1, 2 . . . .  , N -  1, where //m =[Hlrn,  Hzrn, ...,H(N-1)m] r, are the eigen- 

vectors (more precisely the right-hand eigenvectors) of the matrix of equations (64). If  we 
denote the matrix of the equations in (64) by [M], then its left-hand eigenvectors, which 
are biorthogonal to the //m, are the (right-hand) eigenvectors of [M] r [7]. From (64) and 
(67), it is clear that the two sets of eigenvectors have the same form but with ~ and r/inter- 
changed. If  urn and v m are normalized right-hand and left-hand eigenvectors of [M], respec- 
tively, then 

mrc (N - 1)mrc 1 r 
urn = R m (~m/~lm) ~ sin--~- . . . . .  ~rn/qrn)(N-1)/2 sin ~r- _] ' 

I mzc (N T 
rrn = Rrn (~rn/r sin N (qrn/r sin ---1)m~c7 (74) 

. . . .  ' N J '  

VrmUrn = 0 for m • n. 

To find Rm, note that for m = n 

N-1 nmTr 2 ( 2N_@ ) VmrUrn = R 2 ~2 sin z -  = R,, = 1; R,, = (2/N) ~. (75) 
rt=l N 

The expression for the summation in (75) is derived in [4], p. 39. 
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The desired particular solutions wp, to (61) are independent of y. The matrix of the 
resultant equations is symmetric and the solution may be obtained by employing the 
method of [3] as in the preceding section. The result is 

N- l N-  1 n m n  mjzc 
wp, = (2QN -3) E E s i n - - s i n  ( 2 , . -  2) -~ (76) 

,.=1 j=l  N N 

where 2m = 2 c o s ( m ~ / N ) ,  as in the preceding section. 
We can now write the solutions for w, in matrix form. Let 

e , .  = elm cosh ItmY + e2m sinh I t , . y ,  e = e ( y )  = [ e l ,  e2 . . . . .  eN-1] r, 

wp = [wpl, wp~ . . . .  , w~(N_l)] r ,  w = w(y) = [w~, w2 . . . . .  w~- l]  T, 

U = [ul, us . . . . .  uN-1 ] ,  V = [vl ,  v 2 , . . . ,  v ~ _ l ] .  

(76) 

Then 

w(y)  = Ue(y)  + w r (77) 

From the last two conditions in (47), 

w(O) = w(p) = 0 .  (78) 

Substituting (77) into (78) and premultiplying the result by V T, we obtain elm immediately 

and can solve for e2,,. Thus, 

N- 1 1 - cosh ItmP 
T = ~. VimWpi , e2m = elm. (79) 

elm = -- VmWt~ i= 1 sinh It"p 

To obtain w~, note that, from (60) and (62), to order N -1 

! 
Wo = N w l ,  (80) 

as in the preceding section. As N goes to infinity, the solution (80) may be considerably 
simplified. We begin by simplifying wp, in (76). Note that for N ~ oo 

N-1 m j z c f ~  ~(2/mlr), m odd, 
N -1 E sin = sin mrcxdx  = 

~= 1 N {0, n even, 

mrc 1) N2(2m -- 2) = 2N 2 cos N 

Hence 
N- 1 n m~  

wpn= - 4 Q  E ( m r c ) - Z s i n - - ,  
m=1, 3 , 5  N 

N w p l  = - 4 Q  ~. ( m r c ) - 2 = - � 8 9  
m=1,3 ,5  

mT~ 
= - -  m27z 2, N s in  - -  

N 
m ~ .  

(81) 

(82) 
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Moreover, for N ~ oo, ~m/~m = 1 [see (66)], so that from (74), (76), (77), (79) and (82), 

N- 1 N- 1 N- 1 mrc im~ ik~z 
wcl = 8 Q N  -1 ~ ~, Y. (kT~) -3 sin sin s i n - -  

i=l k=l,3 . . . . . .  1 N N N 

1 - cosh #rap sinh #my~. 
x cosh #,.y + sinh ~,.p / 

Noting that 

imz  ikrc (, 1 
N -x ~ sin - sin - -  = J sin mzcx sin krcxdx 

i=l N N o 

(83) 

[�89 for m = k ,  
(84) 

~0, for m C k ,  

then we have, from (81), (83) and (84), 

Nwcl = 4Q 5 (mrc) -2 cosh#my + 
= 1  

1 - cosh ProP sinh r  , (85) 
sinh #mP / 

where #,, = m~/7, as in (73). Taking into account (82) and (85), (80) becomes 

w~ = Q 4 ~2 (mrc)- 2 cosh #,,y + sinh [2my - -  �89 . (86) 
~= 1,3 .... sinh p,,p 

4. Discussion 

If  e = ~/2, i.e. ~ = 1 so that #m = mrc, then (86) yields the rectangular membrane solution. 
Note that, unlike the solution in (51), which is restricted in form by the assumption of  (49) 
and which must hold in the entire paraIMogram-shaped region, (86) has to hold only in 
an infinitesimally wide strip near x = 0. Therefore, it is unaffected by the fact that ~ ~ re/2. 
Indeed, (86) coincides in form with the solution for a rectangular membrane of length 
a sin ~ and width b. Substitution of (56) and (86) into (59), taking into account (55) yields 
the coefficients A, in the eigenfunction expansion [see (51)]. The resultant solution is exact 
in the usual series solution sense, i.e. by taking a sufficient number of terms we can make 
the error as small as we please. However, in a problem which is tractable by separation o f  
variables, e.g. the rectangular membrane, a series may be constructed so that each term in 
the series satisfies all boundary conditions. Whereas for nonseparable problems, such as the 
parallelogram-shaped membrane, some boundary conditions (at x = 0 and x = 1 in our 

case) are only satisfied by the infinite series as a whole. 
Usually, the method of invariant imbedding is employed to change a boundary value 

problem into an initial value problem, which is more convenient for obtaining a numerical 
solution. In some problems, quantities of interest are related to the derivatives of  the 
solution. For  example, if we set (p/S)  = 2 [see (46) and (48)], then (46) and (47) define 
the Prandtl stress function for the torsion of a prismatic bar [6] in which the stresses are 
related to the derivatives of the solution function denoted here by w. It is therefore desirable 
to retain analytic control of the solution. This goal is attained by the eigenfunction solution 

Journal of Engineering Math., Vol. 10 (1976) 363-376 



376 H. Herman 

which we obtained. A similar situation exists in some problems of plane elasticity (e.g. [8]) 

and  plate theory [5]. 

In conclusion, a method introduced by Lanczos for the approximate solution of boundary 
value problems in ordinary differential equations has been extended to boundary value 

problems in partial differential equations. I t  has been employed in obtaining approximate 

solutions and as a method of invariant imbedding to obtain approximate and exact initial 
values. The initial values were then utilized to obtain an eigenfunction solution to a non- 

separable problem in which the derivatives of  the solution function are of  interest, so that 
retention of analytic control is desirable in order to avoid numerical differentiation. 
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